The Cali Garmo

does Math

References

The following is a list of all references on this website.

  • [A11] P. S. Alexandrov Combinatorial Topology, Dover Publications, 2011.
  • [A56] P. S. Aleksandrov Combinatorial Topology: Volume 1, Graylock Press, Rochester, N.Y. 1956; 73-76.
  • [ABR00] R. Adin, F. Brenti, Y. Roichman, Descent numbers and major indices for the hyperoctahedral group, Special issue in honor of Dominique Foata's 65th birthday (Philadelpha, PA 2000), Adv. Appl. Math. [27] (2001), 210-224. DOI
  • [Ale] Per Alexandersson https://www.math.upenn.edu/~peal/polynomials/llt.htm
  • [Bia06] R. Biagioli, Signed Majonian polynomials for classical Weyl groups, Eur. J. Comb. [27]-2 (2006) 207-217. DOI
  • [BBBS11] Chris Berg, Nantel Bergeron, Sandeep Bhargava, Franco Saliola Primitive orthogonal idempotents for R-trivial monoids, Jour. Alg.  348 (2011), no. 1, 446-461. DOI, arXiv
  • [Bro00] Kenneth S. Brown Semigroups, Rings, and Markov Chains, Journal of Theoretical Probability. [13] (2000), no. 3, 871-938. DOI, arXiv
  • [Cli41] A. H. Clifford Semigroups admitting relative inverses, Ann. of Math.  42 (1941), no. 4, 1037-1048. DOI
  • [Cli54] A.H. Clifford Band of Semigroups, Proc. Amer. Math. Soc.  5 (1954), 499-504. DOI
  • [CR64] L. Carlitz, J. Riordan, Two element lattice permutation numbers and their $q$-generalization, Duke Math J. [31]-3 (1964), 371-388. DOI
  • [Day94] Alan Day Congruence Normality: The characterization of the doubling class of convex sets, Algebra Universalis  31 (1994), 397-406.
  • [E60] J. R. Edmonds A combinatorial representation for polyhedral surfaces, Notices Amer. Math. Soc. 7 (1960), 13 pages.
  • [FJN95] Ralph Freese, Jaroslav Je┼żek, J.B. Nation Free Lattices, (1995), American Mathematical Society.
  • [Foa68] D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. [19] (1968), 236-240. DOI
  • [Gre51] J.A. Green On the Structure of Semigroups, Annals of Mathematics, [54] (Jul. 1951), no. 1, 163-172.
  • [Gri95] P.A. Grillet Semigroups: An Introduction to Structure Theory, CRC Press 1995, 1st edition.
  • [Hai] Mark Haiman http://math.stanford.edu/~vakil/crm07/haiman.pdf
  • [Hum90] J. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, 1990
  • [J70] A. Jacques Constellations et graphes topologiques, Combinatorial Theory and its applications.  Vol. 2 (1970), 656-673.
  • [K-B40] Fritz Klein-Barmen Über eine weitere Verallgemeinerung des Verbandsbegriffes, Mathematische Zeitschrift  46 (1940), 472-480. DOI
  • [Kan01] R. Kane, Reflection groups and Invariant Theory, Springer, New York, 2001
  • [Mac60] P.A MacMahon, Combinatory analysis, Two volumes (bound as one), Chelsea Publishing Co., New York., 1960.
  • [Mcl54] David McLean Idempotent Semigroups, Amer. Math. Monthly  61 (1954), no. 2, 110-113. DOI
  • [Ree40] D. Rees On Semi-groups, Math. Proc. Camb. Phil. Soc.  36 (1940), no. 4, 387-400. DOI
  • [Sag00] B. Sagan, The Symmetric Group, Springer, New York, 2000
  • [Sch08] Manfred Schocker Radical of weakly ordered semigroup algebras, Jour. Alg. Comb.   28 (2008), 231-234. DOI
  • [Sch47] Maurice-Paul Schützenberger Sur certain treillis gauches, C. R. Acad. Sci.  224 (1947), 776-778.